Knowledge-Based Systems 24 (2011) 595-608

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Combining description logics and Horn rules with uncertainty in ARTIGENCE

Xiaoqing Zheng *

School of Computer Science, Fudan University, Shanghai 201203, China

ARTICLE INFO

ABSTRACT

Article history:

Received 18 March 2010

Received in revised form 18 January 2011
Accepted 18 January 2011

Available online 26 January 2011

Keywords:
Description logics
Logic programming
Uncertainty
Semantic Web
Horn rules

We present ARTIGENCE, a representation language that combines description logics and Horn rules with
uncertainty. ARTIGENCE capabilities go beyond the similar hybrid systems presently available, and it con-
tains three components: a highly expressive description logic ACLA'R, a set of probabilistic Horn rules
and a set of ground facts. The new features described, often required in realistic application domains,
can be summarized in three main points. First, we obtained a sound, complete and decidable algorithm
for reasoning in ARTIGENCE knowledge base, with decidability being an important indicator that the
computational complexity of the language might be essential issue for practical applications. Second,
ARTIGENCE was designed not only to combine the expressive power of Horn rules and description logics,
but also for its ability to deal with uncertainty. Third, we consider ACLAR as a description logic compo-
nent of ARTIGENCE, which is one of the most expressive description logic with decidable inference pro-
cedures so far. We also show that the specific description logic ACLNR used in our proposed framework
is not mandatory, and other decidable description logics, even their probabilistic versions can be accom-
modated to our framework.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Description logics (DL) are the descendants of so-called “struc-
tured inheritance networks”, which were introduced to overcome
the ambiguities of early semantic networks and frames. In DL, con-
cepts are defined by the sets of objects as unary predicates, and
roles are defined by the relationships between objects as binary
predicates. Horn rules are a natural representation language in
many Artificial Intelligence applications for which several efficient
inference engines have been developed. Description logics and
Horn rules are strict and tractable subsets of first order logic. There
is expressive overlap of DL with Horn rules, but neither Horn rules
nor DL is fully included by the other.

Horn rules and DL are not reducible to each other although
there is the expressive intersection between those two formalisms.
Horn rules require that all variables are universally quantified at
the outer level of the rules. As a result of the restriction on quanti-
fiers, Horn rules lack the possibility to express the existence of
individuals whose identities might not be expressed explicitly.
For example, it is impossible to state that every person has a
mother (known or unknown), which is easy with a DL axiom, Per-
son C 3 Mother. A Horn clause is said to be definite when only one
of its literals is positive. Negation is not allowed within the body or
head of a definite Horn rule. Thus, it is impossible to represent that
all persons are either male or female (but not both). This would

* Tel.: +86 21 5135 5386.
E-mail address: zhengxq@fudan.edu.cn

0950-7051/$ - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.knosys.2011.01.006

also be easily expressed by two DL axioms, Person C Male L Female;
Male C - Female. On the other hand, DL with restricted quantifica-
tion requires that the quantified variables must occur in a binary
predicate along with the free variable [1]. The consequence of this
restriction is that it is impossible to describe concepts whose in-
stances are related to another anonymous individual via different
role paths. For example, it is impossible to describe a concept,
“home workers”, whose individuals live and work at the same
location. This can be easily represented by a Horn rule.

One of the significant limitations of Horn rules is that they are
not expressive enough to represent domain knowledge with rich
hierarchical structures. In contrast, description logic is a family of
logical systems that has been developed especially to model rich
hierarchies of concepts [2]. At the same time, DL systems also need
rules to express dynamic knowledge and support complex applica-
tions. Description logics have become the cornerstone of the
Semantic Web for its use in the design of ontologies. The OWL Full,
DL, and Lite sub-languages of Web Ontology Language (OWL) are
based on description logics [3]. The Semantic Web consists of sev-
eral hierarchical layers, where the ontology layer in form of the
OWL, is currently the highest layer of sufficient maturity. On top
of the ontology layer, the rules, logic, and proof layers of the Seman-
tic Web will be designed next. The OWL rule language is the first
proposal for extending OWL by Horn rules [4]. DL and Horn rules
are two orthogonal and complementary subsets of first order logic.
Several applications, such as combing information from multiple
heterogeneous sources, especially for Semantic Web applications,
can significantly benefit from combing the expressive power of

http://dx.doi.org/10.1016/j.knosys.2011.01.006
mailto:zhengxq@fudan.edu.cn
http://dx.doi.org/10.1016/j.knosys.2011.01.006
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

596 X. Zheng/ Knowledge-Based Systems 24 (2011) 595-608

both formalisms. The motivation for building this hybrid system is
to improve on two basic features of knowledge representation for-
malisms, namely representational adequacy and deductive power.

The key problem in developing such hybrid systems is design-
ing a sound, complete, and decidable inference procedure for
answering queries in the systems. Query answering in the hybrid
systems constituted by DL and Horn rules is more complex, and
it requires nontrivial reasoning. As pointed out in [2], combining
standard Horn rule inference procedures with intermediate DL rea-
soning steps does not result in a complete inference procedure. The
reason for the incompleteness is that Horn rule reasoning proce-
dures apply each rule in isolation, and they try to instantiate the
antecedent of a rule in order to derive its consequence. Since an
ABox of DL represents possibly infinitely many interpretations,
namely its models (open-world semantics), a knowledge base of
the hybrid system may entail the disjunction of the antecedents
of several Horn rules without entailing any of them. Moreover, it
cannot be done by deriving just one empty clause for the compo-
nent of Horn rules in the hybrid systems, as in the classical resolu-
tion calculus or its generalizations [5]. The reason is that such an
empty clause might still have some constraints which are only sat-
isfied by some of the DL models, but not by all of them, which is
also the consequence of the open-world assumption of DL's ABox.

This paper describes ARTIGENCE that combines the expressive
power of description logics and Horn rules with uncertainty. A con-
strained logic scheme [5] has been introduced with a resolution
principle for Horn clauses whose variables are constrained by the
model of description logic. Constraints can be seen as quantifier
restrictions filtering out the values that any interpretation of the
underlying description logic can assign to the variables of the Horn
clause with such restricted quantifiers. It shows that this con-
strained resolution is sound, complete and decidable in which a
set of recursive function-free, and constrained Horn clauses is unsat-
isfiable over a certain description logic if and only if for each canon-
ical interpretation of the description logic we can deduce a
constrained empty clause whose constraint is satisfiable in that
interpretation. We also show that the reasoning under uncertainty
in ARTIGENCE is the instance of a certain type of linear programming
model, typically with exponentially many variables. Query answer-
ing in ARTIGENCE can be reduced to the following procedures: for
every model of DL knowledge base, check if there is at least one con-
strained SLD-refutation whose constraints are satisfied by that
model; then for every SLD-refutation under each model of DL
knowledge base, solve two linear programming problems to obtain
an interval of confidence degree of a query, and take the intersection
of all such intervals as the final confidence degree of the query.

The paper is organized as follows. In Section 2, we describe the
three components of ARTIGENCE with defining the semantics of its
knowledge bases, and point out the reason why traditional infer-
ence mechanisms for Horn rules are inadequate for ARTIGENCE
knowledge bases. Section 3 presents a procedure for reasoning in
ARTIGENCE based on the resolution principle for constrained logics
without considering uncertainty, and proves its soundness, com-
pleteness and decidability. Section 4 discusses the decidable rea-
soning for description logic ALCNR. In Section 5, we provide the
globe algorithm for uncertainty reasoning in ARTIGENCE, and show
how some description logics, even their probabilistic extensions, fit
into our proposed framework. Section 6 presents a brief overview
of related work. Finally, the conclusions and future work are sum-
marized in Section 7.

2. Language ARTIGENCE

The ARTIGENCE knowledge base contains three components.
The first is a description logic knowledge base, the second is a

set of probabilistic Horn rules, and the third is a set of probabilistic
ground facts. ARTIGENCE allows the concepts and roles defined in
the DL component to appear as predicates in the antecedents of
Horn rules. Predicates that do not appear in the DL are called ordin-
ary predicates. Each component of ARTIGENCE is described below.

2.1. Description logic component

In description logics, concepts represent the classes of objects in
the domain of interest, while roles represent binary relations be-
tween objects. Complex concepts and roles can be defined by
means of suitable constructors applied to concepts and roles.
Decidability and complexity of the inference problems depends
on the expressive power of the DLs, and the expressive power is re-
stricted in a set of allowed constructors for building concepts and
roles. Description logics and their properties vary depending on the
set of allowed constructors and the kinds of statements allowed in
the knowledge base. On the one hand, very expressive DLs are
likely to have inference problems of high complexity, or they
may even be undecidable. On the other hand, very weak DLs may
not be sufficiently expressive to represent the important concepts
of a given application. Here we consider ACLNR as the description
logic component of ARTIGENCE. ALCN'R proposed in [6] is one of
the most expressive description logics with decidable inference
procedures so far.

Concepts and roles in ALCAR can be established by using the
following syntax (where P; denotes a primitive role name, C and
D denote arbitrary concepts, and R an arbitrary role):

C,D - A (concept name)

T| (top concept)

1] (bottom concept)

CnD| (conjunction)

CuD| (disjunction)

-C| (complement)

VR.C| (universal
quantification)

3R.C| (existential
quantification)

(=nR)(<nR)
R Pymn..NP,

(number restrictions)
(role conjunction)

Description logics have a model-theoretic semantics, based on
the notion of interpretation. A canonical interpretation Z is a pair
T = (A", 7) consisting of a nonempty set A” (called the domain)
and an interpretation function - mapping different individuals into
different elements of A7, primitive concepts into subsets of A%, and
primitive roles into subsets of A” x A’. The interpretation of com-
plex concepts and roles must satisfy the following equations (#{}
denotes the cardinality of a set):

T? = A*

=y

(€cnDy =c*nD*

(CuDy =Cc*uD*

(—‘C)I _ AI \ CI

(VR.C)T = {d; € A*|Vd, : (dy,d;) e R — dy € C*}
(3R.C)" = {d; € AZ|3d, : (dy,d;) e R* A dy € C7}
(=n R ={dy € A"|#{d; : |(dh,da) € R} > n}
(<n R = {dy € A'|#{d; : |(d1,d;) € R} <n}
(Pyn...NP) =Pin...nP}

X. Zheng/ Knowledge-Based Systems 24 (2011) 595-608 597

A knowledge base of description logic is typically comprised of
two components, a “TBox” and an “ABox”. The TBox contains inten-
sional knowledge in the form of a terminology and is built through
declarations that describe general properties of concepts. The ABox
contains extensional knowledge (also called assertional knowledge)
that is specific to the individuals of the domain of discourse.

The terminological axioms in ACCNR are either concept inclusions
or concept definitions. A concept inclusion has the form C C D, where
Cand D are two arbitrary ALCAR-concepts. The inclusion statement
specifies that every instance of C is also an instance of D. A concept
definition is a statement of the form A = D, where A is a concept and
D is a concept description. An interpretation Z satisfies an inclusion
CC DifC* ¢ D7, and it satisfies a definition A = D if A” = D”. A set of
definitions is said to be cyclicif a concept name may occur directly or
indirectly within its own definition. Terminological cycles are al-
lowed in ACLANR statements, while role descriptions are limited
to conjunctions of primitive roles.

A TBox, denoted by 7, is considered to be a set of concept inclu-
sions and concept definitions. An interpretation Z is a model of 7 if
C* ¢ D” for every concept inclusion C C D in the TBox, and A” = D”
for every concept definition A = D.

In the ABox, one can describe instance-of relations between indi-
viduals and concepts, and between pairs of individuals and roles. In-
stance-of relations are expressed in terms of membership assertions
that have the forms: C(a), and R(a, b), where a and b are individuals,
Cisan ALCNR concept, and R is an ALCNR role. Intuitively, the first
form (called concept assertions) specifies that a is an instance of C,
whereas the second form (called role assertions) specifies that a is re-
lated to b by means of the role R, or b is a filler of the role R for a. An
ABox, denoted by .4, is a finite set of such assertions.

In order to give semantics to membership assertions, the func-
tion - of an interpretation Z is extended to individuals. An inter-
pretation Z = (A”,-7) not only maps primitive concepts and roles
to sets and relations, but in addition maps each individual name
a to an element a’ € A” in such a way that aZ?=b” if a # b. This
property is called unique name assumption which ensures that dif-
ferent individuals are interpreted as different objects.

The interpretation Z satisfies the concept assertion C(a) if
a’ € ¢, and it satisfies the role assertion R(a, b) if (a,b") € R?.
An interpretation Z is a model for an ABox A if 7 satisfies every
assertion in A.

An ALCNR-knowledge base X is a pair X = (7,.4) where 7 is a
TBox and A is an ABox. An interpretation Z is a model for X if it is
both a model for 7 and A.

Example 2.1. Consider the following description logic knowledge
base £ = (T, A;):

T, = {ForeignCompany n DomesticCompany C L
CompeteWithForeign = 3 Samelndustry.ForeignCompany
CompeteWithDomestic = 3 Samelndustry.DomesticCompany
ProtectedCompany =V Samelndustry.—~ForeignCompany
ForeignCompany 1 ProtectedCompany C L
NonMonopoly = CompeteWithForeign LI CompeteWithDomestic}

Ay = {NonMonopoly(b)}

The concepts ForeignCompany and DomesticCompany are primi-
tive concepts, and the first inclusion states that they are disjoint.
The concept CompeteWithForeign (respectively, CompeteWithDo-
mestic) is defined to be set of companies that compete with foreign
companies (respectively, domestic companies) in the same indus-
try, i.e., the set of individuals that at least one filler of the role Sam-
elndustry is a member of ForeignCompany (respectively,
DomesticCompany). The concept ProtectedCompany represents the
set of companies that have no foreign competitors in their

industry. The fifth inclusion states that concepts ForeignCompany
and ProtectedCompany are also disjoint. The concept NonMonopoly
is defined to be set of companies that belong either to CompeteWith-
Foreign or to CompeteWithDomestic. The ABox contains only one
assertion that states that b is an instance of concept NonMonopoly.

2.2. Horn rule component

A clause in first order logics has the form, L;V...VL,, where each
L;is a literal. A literal L has either the form A or —A, where A is atom.
The literal is said to be positive in case A, or to be negative in case
-A. It is said to be a Horn rule when at most one of its literals is
positive. The Horn rule component R of ARTIGENCE knowledge
base contains a set of Horn rules each having the form:

q(Y) vV =p(X1) V...V =Py (Xn)

where X;,...,X,, and Y are tuples of variables or constants. A Horn
rule is said to be safe when a variable that appears in Y must also
appear in X; U...UX,. The safety condition guarantees that the
set of all ground facts derivable from a set of Horn rules is finite.
The predicates ps,. . .,.p, may be either concept or role names defined
in 7, or ordinary predicates that do not appear in 7. The predicate q
must be an ordinary predicate. Note that no restriction is placed on
the arity of the ordinary predicates. ARTIGENCE does not allow con-
cept and roles atoms to appear in the consequents of the Horn rules.
The underlying assumption behind this restriction is that the
description logic component completely describes the hierarchical
structures in the domain. This design decision follows the idea that
rules may not be used to derive the hierarchical structure knowl-
edge. Since —-pvq and p — q are logically equivalent, a Horn rule
can be written equivalently as:

piX1) A APy(Xn) — q(Y)
where q(Y) is called the head or consequent of the rule, and
Pi(X1) A ... Ap,(Xy) is called the body or antecedent of the rule.

A predicate q is said to depend on a predicate p if p appears in
the antecedent of the Horn rule whose consequent is q. A set of
rules is said to be recursive if there is a cycle in the dependency
relation among predicates. Recursive rules are allowed in the ART-
IGENCE knowledge base.

Example 2.2. Consider the following rules Rq, where serviceBy,
highQuality, and price are ordinary predicates, as well as the
description logic knowledge base X; from Example 2.1. We use the
notation that ordinary predicate symbols are strings beginning
with a lower case letter, whereas concept or role names are strings
beginning with an upper case letter.
Ry = {r1 : serviceBy(x,y) A ProtectedCompany(y) — price(x, high)
I, : serviceBy(x,y) A Samelndustry(y,z) A ForeignCompany(z)
A highQuality(y,x) — price(x, high)}

However, not all knowledge in the world is deterministic;
uncertainty often plays an important role, and weights are
required. In ARTIGENCE, a set of Horn rules can be given with some
information about the level of confidence we may have in them.
The confidence level for a rule is indicated by its probability mass,
which is a number in the interval [0, 1]. Since the precise probabil-
ity mass of a rule may be unknown, we will suppose that an inter-
val [I, u] € [0, 1] is given, with which the mass lies. If nothing is
know about the mass, we set [=0, and u=1.

2.3. Ground fact component

The ground fact component is a set of ground atomic facts each
having the form p(a), where a is a tuple of constants and p is a or-
dinary predicate.

598 X. Zheng/ Knowledge-Based Systems 24 (2011) 595-608

Example 2.3. As an example of an ARTIGENCE knowledge base, we
consider K1 = (X1, R, F1), where £, = (71, .4;) is the description
logic component from Example 2.1, R is the set of Horn rules from
Example 2.2, and F; is the following set of ground facts:

F1={f1 : serviceBy(a,b), f, : highQuality(b,a)}

Just as the rules in ARTIGENCE, every ground fact can be given
with real numbers [, u € [0, 1] that indicate the degree of confi-
dence we have in it.

2.4. Semantics of ARTIGENCE knowledge base

In ARTIGENCE, a knowledge base K is defined as a triple,
K = (X,R,F), where

e X = (T, A) is an ACCNR knowledge base;
e R is a set of function-free Horn rules;
e F is a set of ground atomic facts.

The semantics of ARTIGENCE is naturally derived from the
semantics of its components. An interpretation Z* is a pair
T* = (A”",-T") consisting of a nonempty domain A”" and an inter-
pretation function -° mapping every individuals a into an object
a’’ € A¥', and every predicate of arity n into a relation of arity n
over the domain A”". An interpretation Z* is a model of a knowl-
edge base K if it is a model of each of its components. The model
of the description logic component was defined in Section 2.1. An
interpretation Z* is a model of a rule r if, whenever « is a mapping
from the variables appearing in r to the domain A”’, such that
o(X;) € pF for every atom of the antecedent of r, then a(Y) € q*',
where q(Y) is the consequent of r. Z* is a model of a ground fact
p(a) if @ < p”'. Note that every constant occurring in F and R ap-
pears also in X. This is not a real limitation, because for each indi-
vidual a not appearing in X we can add to A the assertion T(a). We
also make the unique name assumption that if a and b are con-
stants in A7, then a” =b" .

2.5. Reasoning in ARTIGENCE

Given a ARTIGENCE knowledge base K, a query Q is a conjunc-
tion of the form p(X), where p can be any predicate, and X is a tuple
of variables or constants.

An answer to a query Q is a substitution 0 for the variables in Q.
The answer 0 is correct with respect to the knowledge base K if
K E Q6, where Q6 is a conjunction of grounds. In other words,
the answer to a query Q is the ground instance of Q which is logical
consequence of K. In particular, a query for K is written as the form
Q = p(a), where a is a tuple of constants.

The following example shows some of additional inferences can
be drawn from ARTIGENCE but not from either of its components
alone, which has also been observed by Levy and Rousset in [2].

Example 24. Given the ARTIGENCE knowledge base K; =
(Z1,R1,F1), does K4 price(a, high)?

For this example, X; U F; does not entail the antecedent of any
single rule in R;. However, we can make the inference by the fol-
lowing cases: (i) if company b has at least one foreign competitor in
the same industry, then the antecedent of rule r, will be entailed,
and the consequent price(a, high) will follow; (ii) if b has no foreign
competitors, then ProtectedCompany(b) will be entailed, and pri-
ce(a, high) will follow by rule ry.

The above example illustrated that an ARTIGENCE knowledge
base may entail the disjunction of the antecedents of two rules
without entailing either of them, and the reasoning may require
making case analyses. Therefore, traditional Horn rule inference

mechanisms that consider each rule in isolation are inadequate
for ARTIGENCE knowledge base. In addition, it is possible for DL
to express the existence of individuals whose identities might
not be expressed explicitly. For the case (i), we suppose that com-
pany b has at least one foreign competitor (known or unknown),
then the antecedent of rule r, is entailed. This case showed that
an ARTIGENCE knowledge base may entail the antecedent of a rule
without the antecedent being instantiated. In contrast, standard
Horn rule inference procedures try to instantiate the antecedent
in order to derive the consequent for each rule. These problems
are caused by the “open-world semantics” of ABox that may repre-
sent many interpretations or models.

Since an ABox of DL represents possibly many interpretations, a
query Q to an ARTIGENCE knowledge base is valid if and only if in
any interpretation or model of the DL component, there exists at
least one refutation for the component of Horn rules. It cannot
be done by deriving just one empty clause for the component of
Horn rules in ARTIGENCE, as in the classical resolution calculus
or its generalizations. The reason is that such an empty clause
might only be entailed by some of the DL models, but not by all
of them. For Example 2.4, if we delete rule r, from the knowledge
base K4, the query price(a, high) will be incorrect with respect to
k1. This is because that all the models of X; can be divided into
two classes: the first one in which company b has at least one for-
eign competitor; and another one in which b has no foreign com-
petitors (see Example 3.2 for detail). Without rule rq, the query
price(a, high) will not follow in the models of the latter class.

In order to design the inference procedure for answering que-
ries in ARTIGENCE, a constrained logic scheme has been introduced
with a resolution principle for the Horn rules whose variables are
constrained by ALCNR description logic. Our algorithm is mainly
based on the technique of a resolution principle for constrained
logics [5]. To summarize, the algorithm has three steps:

o Step 1. Build all the canonical interpretations for a DL knowl-
edge base and represent them by Herbrand structures.

o Step 2. Collect all the SLD-derivations ending with the empty
clauses for a set of function-free recursive Horn rules.

« Step 3. For every canonical interpretation of DL knowledge base,
check if there is a constrained SLD-refutation.

Although the standard resolution of Horn clauses is semi-decid-
able, it is decidable for the above step 2. Note that Herbrand uni-
verse is finite when Horn clauses are function-free, even with
recursive rules. Therefore, we can compute the refutation trees up
to a finite depth depending on given a set of Horn clauses. In the next
section we introduce the inference procedure based upon the reso-
lution principle for constrained logics, and prove its soundness,
completeness and decidability (step 2 and 3). In Section 4 we dis-
cuss the decidable reasoning in ALCANR description logic (step 1).

3. Constrained resolution in ARTIGENCE

The language ARTIGENCE combines the expressive power of
Horn rules and description logics by allowing the usage of concepts
and roles from the description logic component as constraints on
variables that appear in Horn rules. Constraints can be seen as
quantifier restrictions filtering out the values that any interpreta-
tion of the underlying DL can assign to the variables of a Horn
clause with such restricted quantifiers. It shows that this con-
strained resolution is sound, complete and decidable in which a
set of constrained Horn clauses is unsatisfiable over a certain DL
if and only if for each canonical interpretation of the DL we can de-
duce a constrained empty clause whose constraint is satisfiable in
that interpretation.

X. Zheng/ Knowledge-Based Systems 24 (2011) 595-608 599

3.1. Resolution principle for constrained logics

In order to link description logics with Horn rules, description
logics will come in via the constraints that play the role of quanti-
fier restrictions. The constraint theory that is a set of all Herbrand
structures is a tractable case [5]. Therefore, all the canonical inter-
pretations of the DL, as constraint theory, are required to be repre-
sented by Herbrand structure, which can be done trivially.

The Horn rules defined in Section 2.2 are called constrained
clauses, denoted by R-clauses. The DL concepts and roles that ap-
pear in an R-clause are called the constraints or restrictions of the
R-clause, denoted by R. P denotes the remainder of the R-clause
after its constraints have been taken away and we call P the
kernel of the R-clause. An R-clause is logically equivalent to a
formula V4(R — P), where X is a finite set of variables. We
usually denote constrained clauses by the form P||R instead of
V(R — P).

Example 3.1. The rule r; from Example 2.2 can be rewritten into
Vy(ProtectedCompany(y)) — (—serviceBy(x,y) V price(x, high))

or (—serviceBy(x,y) V price(x, high))|| (ProtectedCompany(y))

where R : ProtectedCompany(y)

and P : —serviceBy(x,y) V price(x, high)

Definition 3.1. Let L; and L, be any pair of R-clauses, such that L,
contains at least one positive literal p(x, ..., X,) and L, contains at
least one negative literal —-p(yy, ..., yn) each with the same predi-
cate p, where x;, y; (i=1,...,n,n > 1) are variables or constants.
Let 6 be the most general unifier such that x;0=y; 6, i € n. The con-
strained resolution rule for L, and L, with substitution 0:

Ly :p(X1,...,%,) UP1||Ry

Ly :=p(yy,-- -, Yn) UP2|Ry
L3 : P10 UP29||R]9 ARy0

where P; and P, are the remaining parts of the two R-clauses. The
derived clause L3 is called a constrained resolvent of the two parent
R-clauses.

A constrained resolution step R — R’ transforms an R-clause set
R into the next set R’ by adding a derived R-clause that is a resol-
vent of two parent R-clauses in the previous set R. A constrained
derivation is a sequence of constrained resolution steps starting
with an initial set Ry of R-clauses. A constrained refutation of an
R-clause set Ry is a constrained derivation starting with the set
Ro, such that for each model of the constraint theory there is a
set R, of R-clauses in the derivation containing an empty R-clause
O||R whose restriction is satisfied by that model.

3.2. Proof of soundness, completeness and decidability

Let us first prove whether the constrained resolution is sound
and complete method for checking if a query Q is the logical conse-
quence of a knowledge base K. We reformulate some results from
[5] here, and show that query answering in ARTIGENCE is decidable.

Lemma 3.1. An R-clause produced by the constrained resolution rule
from two parent R-clauses also logically follows from them.

Proof. Taking the signature from Definition 3.1, we first consider
the kernel of R-clauses L; and L,. Let 0 be the most general unifier
for L; and L,, and through application of universal instantiation, we
have

.,Xn)\/P1 Fp(xl,...,xn)(?\/Pﬁ
'7yn)\/P2 }_ﬁp(ylw--v.Vrl)vazg

P, ..
“p(.y‘lw'

then (p(x1,..., %) VP1) A (=D, .-
\/P]()) A (—‘p(y], . vyn)() \Y Pz())

and (AVB) A (-AV C) — (BV C)is tautology,

then (p(x1,...,X2)0V P10) A (=p(¥1,---,Yn)0V P20) = P10V P20
hence (p(X1,...,%n) VP1) A (=pV1s---,Ya) V P2) P10V P,0.

7yn)\/P2) F (p(X17...,Xn)9

Note that all variables in R; and R, be universally quantified.
This allows full freedom these variables to be replaced by terms
from the domain, and the constraints preserves validity. 0O

Definition 3.2. Let a Herbrand structure M = (H,I) be a model for a
DL knowledge base ¥, where the domain of the structure is a Her-
brand universe, denoted by H, and each Herbrand structure can be
identified with its Herbrand interpretation, denoted by I. A con-
straint theory R is the set of all such M models. A structure
M* = (H",T") expands the model M to the ordinary predicates in
Horn rules and the ground fact component. The relationship of
M* to M is the same as Z* to Z (see Section 2.4). Let « be an assign-
ment that maps each variable into an element of the domain H*.

e Let R be the constraint or restriction of an R-clause. If there is a
model M and an assignment o that satisfy R, we write
(M,) ER.

e Let P be the kernel of an R-clause. We call the triple (M, a,P) a
M-instance of the R-clause iff (M,) = R.

e Let R be a set of R-clauses. Then a set {(M,a;, P;) : i € n} of M-
instances of R-clauses Pj||R; (i € n) of R is called a M-instantia-
tion of R iff (M, o) = R; for each i e n.

e The set {(M, o, P): P|R in R and (M, «) = R} of M-instances of
all R-clauses in R is called the M-base of R.

e We call a set R of R-clauses is satisfiable iff there is an expansion

M* of M satisfies the M-base of R; otherwise R is called unsat-
isfiable.
The above definition is the generalization of classical notion of
ground instances of clauses, which is considered as a triple con-
sisting of a Herbrand universe, a ground assignment, and the
clause to be instantiated.

Theorem 3.2 (Herbrand Theorem). A set R of R-clauses is unsatisfi-
able iff for each model M in the constraint theory R there is a finite
Me-instantiation of R that is unsatisfiable (reformulated from [5]).

Proof

(=) Let R be unsatisfiable. Suppose there is a M € R such that
each finite M-instantiation of R is satisfiable. By the Compact-
ness Theorem for first order logics (note that description logics
and Horn rules are strict subsets of first order logic) we have
that the M-base for R is satisfiable. Hence there is an expansion
M, such that for each P|R in R and each assignment o with
(M, o) =R we have (M* o) E P, which is a contradiction to
the unsatisfiability of R.

(<) This direction is obvious. If for each model M € R there is
no M-base of R that is satisfiable. Hence it is impossible to con-
struct an expansion M* of M which satisfies R. O

Definition 3.3. In order to prove the unsatisfiability of R by using
the unsatisfiability of a M-instantiation we introduce the follow-
ing M-resolution rule for M-instances which generalizes the con-
strained resolution rule (see Definition 3.1).

Ly: (M,o,p(X1,...,%) UPy)

L12: (Mvavﬁp(YIv"'vyn)UPZ)
L/3: (M,oc,P19UP29) and R; = R0 ARy0

600 X. Zheng/ Knowledge-Based Systems 24 (2011) 595-608

Where the constraint
(M, o) E RO AR0.

The following Lifting Lemma shows that a M-resolvent of M-
instances of two R-clauses is also a M-instance of the constraint
resolvent of the two R-clauses.

of R-clause L7 is Ri0AR:0 and

Lifting Lemma 3.3. Let P;||R; and P,||R; be two R-clauses and let
(M, o, Py) and (M, o, Py) be the M-instances of the two R-clauses.
Then a M-resolution step on the two Me-instances can be lifted to a
constrained resolution step on the two R-clauses, such that the M-
resolvent (M, a, P) is a M-instance of the constrained resolvent P|R.

Proof. It follows from the definition of M-instance and M-
resolvent. O

The following proposition says that AM-resolution can be used
to deduce the empty M-instance from every unsatisfiable M-
instantiation.

Proposition 3.4. If a finite M-instantiation D of a set R of R-clauses
is unsatisfiable, then there exists a finite derivation containing an
empty M-instance through M-resolution (reformulated from [5]).

Proof. Mathematical induction has been used to prove this propo-
sition. We consider two cases.

Case 1. If the empty M-instance is already in D, we finished.

Case 2. If the empty M-instance is not in D, we proceed by
induction on the number N of excess literals in D which
is the number of literal occurrences in D minus the
number of M-instance in D.

N = 0 (then no non-unit M-instance is in D. Here an unit is a M-
instance in which the kernel P has only one literal): Because D is
unsatisfiable there must be two complementary units (M, o,L7)
and (M,o,L;) in D (the corresponding variables of the two M-
instances are assigned to the same elements in M by o). A M-
resolution step on the two units will deduce an empty M-instance.
Otherwise let be any expansion M* of M, such that p(a(xq), ...,
o(xy)) is true in M* if the unit (M, o, p(xq,...,%,)) is in D, and
plo(xq), ..., a(xy,)) is false in M* otherwise. Then M* satisfies D by
definition. Therefore the empty M-instance can be derived.

N > 0: let the Proposition be true for all D with fewer than N
excess literals. Then there is at least one non-unit M-instance, say
(M, o, L"), that has at least one excess literal. Let L”: = L'\{p} for
some literal p in L'. Then the set

D' := ([D \ {(M a?”)}) U {(Ms O(,L//)}

is also an unsatisfiable set. Since it contains one fewer excess literal,
by the induction hypothesis there is a deduction of the empty M-
instance. Similarly, the set

D' = (D\ {(M, 0, L)}) U{(M, o {p})}

is unsatisfiable and there is a deduction of the empty M-instance by
induction hypothesis. If p is not used in the deduction for I, then it
works also for D. Otherwise a deduction of the empty M-instance
for D can be constructed as follows. We add p back into L’ and all
its descendants in the deduction for D’ in order to get a deduction
for D. Now, this modified deduction contains either the empty
M-instance or the unit (M, a, {p}) resulting from the empty M-in-
stance after adding p to it. In the latter case we get a deduction of
the empty M-instance for D by appending the deduction of the
empty M-instance from D” onto the end of this modified
deduction. O

Theorem 3.5 (Soundness and Completeness for the Constrained Res-
olution). A set R of R-clauses is unsatisfiable iff for each model M € R
there exists a constrained derivation from R containing an empty R-
clause OJ||R, such that M [R (reformulated from [5]).

Proof.

Soundness («<): Assume R were satisfiable, then there exists a
M € R such that M* R for some expansion M* of M. By
Lemma 3.1 M* | VX(R — P) for each R-clause P||R that can be
derived by the constrained resolution from R. By the precondi-
tion an empty R-clause OJ||R with M [R is derivable from R.
Therefore there is an assignment o with (M*,) = O. This is a
contradiction.

Completeness (=): Let M be amodel in R. If R is unsatisfiable, then
for each M € R there must be a finite M-instantiation that is
unsatisfiable (Herbrand Theorem 3.2), and we can deduce the
empty M-instance by M-resolution (Proposition 3.4). By the
Lifting Lemma 3.3 this refutation can be lifted and hence the col-
lected restriction R of the empty M-instance is satisfied by M. O

Note that it is enough to consider for each M € % only those R-
clauses of R whose constraints are satisfiable by that M. The same
holds for the resolvents that are derived. The following theorem
shows that our algorithm always terminates.

Theorem 3.6 (Decidability). Query answering in ARTIGENCE is
decidable.

Proof. In order to answer a query Q to an ARTIGENCE knowledge
base K, our algorithm has three steps. First, we build all models
for an ALCNR description logic knowledge base and represent
them by Herbrand structures, which has proved to be a decidable
problem (see Section 4.3). Second, we collect all the SLD-deriva-
tions ending with the empty clauses and the corresponding con-
straints for a set of constrained clauses. Note that Herbrand
universe is finite when Horn clauses are function-free, even with
recursive rules since the number of constants is finite. It is well-
known that SLD-resolution for Datalog is complete if one computes
the refutation trees up to a finite depth [7]. Let nconst denote the
number of distinct constant symbols which occur in R, let npreds
denote the number of distinct predicate symbols occurring in R
and let maxargs denote the maximum arity of all predicates in R.
The maximum depth of refutation trees is nconst - npreds™ ',
Since there is a straightforward one-to-one mapping between con-
strained SLD-derivations and the Datalog derivations, we can com-
pute the refutation trees up to a finite depth depending on given a
set of Horn clauses, and this step is also decidable. Finally, for every
canonical interpretation of the DL knowledge base, check if there
exists at least one SLD-refutation whose constraints are satisfied
by that model. There are two kinds of constraints, C(a) and
R(a,b), where a and b are individuals, C is an ALCNR concept,
and R is an ALCANR role. Checking satisfaction of the constraints
can be done by performing a lookup in a canonical interpretation
I of the DL knowledge base. If we are performing a lookup for a fact
of the form C(a), we check whether a? e C*. Lookups for role atoms
can be done similarly. O

Example 3.2. Given the ARTIGENCE knowledge base
K1 = (1,1, F1), does price(a, high) logically follow from X;?

Considering the description logic knowledge base X, = (71, 41)
from Example 2.1, the following two canonical interpretations Z;
and 7, satisfy all the inclusions in 7; and all the assertions in Aj,

X. Zheng/ Knowledge-Based Systems 24 (2011) 595-608 601

and therefore they are models for ;. It can be proved that all other
models of X, are equivalent to Z; or Z5. For clarity, we have already
omitted redundant instances that are irrelevant to the query.

I1: Zy:

A" = {b, 1} AT = {b, v}
ForeignCompany™ = {v;} ForeignCompany™ = {5}
DomesticCompany™ = {5} DomesticCompany™ = {v,}
CompeteWithForeign™ = {b} CompeteWithForeign™ = {5}
CompeteWithDomestic™' = {z/} CompeteWithDomestic™> = {b}
ProtectedCompany”' = {} ProtectedCompany™ = {b, v1}
NonMonopoly™ = {b} NonMonopoly™ = {b}
Samelndustry™ = {(b, v1)} Samelndustry™® = {(b, v1)}

where the instance ¢ is added during the procedure of building the
canonical interpretation for ALCAR knowledge base X, and the
name v; can be substituted by any other arbitrary symbol.

The above two interpretations Z; and Z, of the ALCNR knowl-
edge base X; can be represented by Herbrand structures M; and
M, respectively.

My = (Hy, 1) My = (Hp,Ip)

Hy ={b, 0} Hy ={b, 01}

I, = {ForeignCompany(v;), I, = {DomesticCompany(v;),
CompeteWithForeign(b), CompeteWithDomestic(b),
NonMonopoly(b), NonMonopoly(b),
Samelndustry(b, v;)} ProtectedCompany(b),

ProtectedCompany(v;),

Samelndustry(b, v;)}

The query price(a, high) can be rewritten to the corresponding
R-clause —price(a, high)||O, and all constrained clauses of this
example are given below:

ri: —serviceBy(x,y) V price(x, high)|ProtectedCompany(y) (1)

r,: —serviceBy(x,y) v —highQuality(y,x) v price(x, high)|| (2)
ForeignCompany(z) A Samelndustry(y, z)

fi+ serviceBy(a,b)||O (3)

fo+ highQuality(b,a)||O (4)

Q: —price(a, high)|O (5)

For the model M;, we can deduce the following constrained
refutation.

—serviceBy(a,y) v —highQuality(y, a)||ForeignCompany(z)

A Samelndustry(y, z) (6)
by (5) and (2) with {a/x}
—highQuality (b, a)||ForeignCompany(z) A Samelndustry(b, z) (7)
by (6) and (3) with {b/y}
0| ForeignCompany(z) A Samelndustry(b, z) (8)

by (7) and (4) with { &/}, and by mapping variable z to v;, M k (For-
eignCompany (z)ASamelndustry (b, z)) holds.
For the model M;, we also have another constrained refutation.

—serviceBy(a,y)|ProtectedCompany(y) 9)
by (5) and (1) with {a/x}
O||ProtectedCompany(b) (10)

by (9) and (3) with {b/y}, and M, E ProtectedCompany(b) holds.

For every canonical interpretation of the ALCAR knowledge
base X; we can deduce a constrained empty clause whose con-
straint is satisfiable in that interpretation. Hence KC; | price(a,
high).

4. Decidable algorithm for ALCNR

The fundamental deduction in the DL knowledge base X is
checking whether X is satisfiable. If X is satisfiable we can build
all models for the knowledge base ¥ by an algorithm based on tab-
leaux-like calculus. The algorithm makes use of the notion of con-
straint system [8,9], and begins with an initial constraint system
translated from X. The initial constraint system represents the
set of all models of X. Then several propagation rules are applied
to generate a set of completions. A constraint system is complete
if no propagation rule can apply to it. Each completion is an elab-
oration of the initial constraint system, in which every implicit
constraint has been made explicit. Every completion may contain
a clash or a clash-free tableau branch. For each clash-free comple-
tion that represents a model of X, it is always possible to build a
canonical interpretation for X on the basis of the completion. We
rephrase results with minor modification from [2,6].

4.1. Constraint system

An ALCNR-knowledge base X is a pair X = (7, A) where 7 is
the intensional one, called TBox and A is the extensional one, called
ABox. We denote the set of individuals that appear in X by O, and
introduce a new alphabet of variable symbols vV, with a well-
founded total ordering < on V. The alphabet V is disjoint from O.
The elements of V are denoted by the letters u, v, w, x, y, z. The term
object is an element of © U V. Objects are denoted by the letters s, t,
and individuals are denoted by the letters a, b.

A constraint system is a finite nonempty set of constraints of the
forms:

s:C, sPt, Vxx:C, s#t

where Cis a concept and P is a primitive role name. Given an inter-
pretation Z = (A”, .7), an Z-assignment . is defined as a function that
maps every variable of V to an element of A%, and every individual a
to a’.

A pair (Z, o) satisfies the constraint s: C if a(s) € C?, the con-
straint s P t if ((s), «(t)) € P, the constraint Vx. x: C if C* = A”,
and the constraint s # t if o(s) # o(t). A constraint system S is sat-
isfiable if there is a pair (Z, «) that satisfies every constraint in S.

Let S be a constraint system and R be a role defined by the
description R=P; ..M P, (k > 1). We say that an object t is an
R-successor of an object s in S if s Pit, ..., s Pit are in S. We say that
tis a direct successor of s in S if t is an R-successor of s for some role
R. The direct predecessor is the inverse of the direct successor. The
successor denotes the transitive closure of the direct successor rela-
tion, and the predecessor denotes its inverse.

We say that s and t are separated in S if s # t is in S. We denote
by S[u/t] the constraint system obtained from S by replacing each
occurrence of the variable u by the object t. We assume that vari-
ables are introduced in a constraint system according to the order-
ing <. If vis introduced to a constraint system S, then u < v for all
variables u that are already in S. Given a constraint system S and
an object u, we define the function o(S,u) := {Clu: C € S}. We
say that two variables u and v are concept-equivalent if
o(S,u) = o(S,v). Intuitively, two concept-equivalent variables
have the same properties, and they may represent the same ele-
ment in the domain, unless they are separated in S. A constraint
system contains a clash, if it has one of the following forms:

602 X. Zheng/ Knowledge-Based Systems 24 (2011) 595-608

e {s: L}or

e {s: C, s: —C}, where C is a concept name, or

o {s:(<nR)}U{sPiti,...,sPtiicl,...,n+1ju{ttli,jel,...n
+1,1i# j} where R=PqM... NPy.

4.2. Algorithm description

Given an ARTIGENCE knowledge base K = (X, R, F), its descrip-
tion logic component, the ALCNR knowledge base X = (7, A), can
be translated into the constraint system Ss as follows.

(S1) For every concept assertion ((a), put the constraint a: C in
Ss.

(S2) For every inclusion CC D € 7 , put the constraint V x. x:
-CUD in Ss.

(S3) For every R(a,b) € T, put the constraints a Py b, ..., a P, b if
R=P; |_|..J—\Pk, (k = 1) inSz.

(S4) For every pair (a, b) of individuals appearing in AU F, put
the constraint a # b in Ss.

(S5) For every concept C that appears in R, put the constraint Vx.
x: CU-Cin Ss.

The last set of constraints added in [2] is necessary, which
forces an object s to belong either to a concept C or its negation
for every object s and concept C appearing in R in every comple-
tion that the algorithm generates. It is obvious that X is satisfiable
iff Sy is satisfiable. We assume that all the concepts in a constraint
system are simple, i.e., the only complements they contain are of
the form —C, where C is a primary concept name. Every ALCNR
concept can be rewritten into equivalent simple concept in linear
time [8].

In order to check a knowledge base X = (7, A) for satisfiability,
the algorithm starts with Sy, and adds constraints to Ss until either
a clash is generated or an interpretation satisfying Sy can be ob-
tained from the resulting system. Constraints are added on the ba-
sis of a suitable set of propagation rules. The seven propagation
rules are [2]:

(R1) S—n {s:Cq,s: G}US
if (1)s: (4nGisin S,
(2) s: C; and s: G, are not both in S.
(R2) S—, {s:D}US
if (1)s: GuGisin S,
(2) neither s: C; nor s: C, are in S,
(3)D=C1 or D=0C,.
(R3) S—v {t:C}us
if (1)s:VR.Cis in S,
(2) tis an R-successor of s,
(3)t: Cisnot in S.
(R4) S—3 {sP1y,...,sPy,y : C}US
if (1)s: dR.Cisin S,
(2)R=P1 . Py
(3) y is a new variable,
(4) there is no t such that t is an R-successor
of sinSand t: Cisin S,
(5) if s is not blocked.
(R5) §—> {sP1y;, ... sPyyilie 1,...,n}u

iAyilijel, ... ni#us
if (1)s: (=nR)isin S,
(2)R=Pym...MP,
(3) y1, ..., yn are new variables,
(4) there do not exist n pairwise separated
R-successors of s in S,
(5) if s is not blocked.

(R6) S—- Sly/t]
if (1)s: (<nR)isin S,
(2) s has more than n R-successors in S,
(3) y, t are two R-successors of s which are
not separated.
(R7) S—vy {s:C}us
if (1)vx. x: Cisin S,

(2) s appears in S,
(3)s: Cis not in S.

We call the rules R2 and R6 nondeterministic rules, because they
can be applied in at least two different ways to the same constraint
system. All the others are said to be deterministic rules. The rules R4
and R5 are called generating rules, since they add new variables to
the constraint system. All the others are called nongenerating rules.

A naive application of the propagation rules may cause infinite
chains of application of generating rules and may not terminate.
Therefore, the generating rules can be applied only on variables
that are not blocked, which is related to the goal of keeping the con-
straint system finite.

If we only consider the variables in a constraint system, it forms
a forest of trees whose nodes are the variables and there is an arc
from u to vif vis a direct successor of u. Examining the propagation
rules reveals that the generating rules introduce new nodes in the
forest, and the rule R6 unifies two successors of the same node. All
the other rules do not change the forest. The depth of a variable in a
constraint system is defined to be its depth in the tree to which it
belongs. With this structure, the notion of n-tree equivalence
among variables in a constraint system can be defined as follows.

Definition 4.1. The n-tree of a variable »in a constraint system X is
the tree that consists of the variable » and its successors, whose
distance from v is at most n arcs of direct successors. The set of
variables in the n-tree of v are denoted by V,(v).

Two variables ¢, u € X are said to be n-tree equivalent if there is
an isomorphism W: V,(v) — V,(u) such that

oWV (V) =1u,
e for every s,t € V,(v),s Pt € Siff ¥(s) P W(t) € S, and
o for every s € V,(v),0(S,'P(s)) = a(S,s).

If there is two n-tree equivalent variables, u and », such that
u < v then we say that u is a witness of ». The leaves of the n-tree
whose root is v will be blocked. We denote by Di the maximum
number of roles with the same name in all empty R-clause of
SLD-refutations, which is designed especially to check satisfiability
of the restrictions of the empty R-clauses. Given the definition of n-
tree equivalent, we can define the notion of a witness of a variable.

Definition 4.2. A variable u is a witness of a variable v if

e u is Dg-tree equivalent to ,

e v is not in the Dg-tree of u, and

o there is no other variable w, such that w < u, and w satisfies the
first two conditions.

A variable u is said to be blocked if u is a leaf of a Dg-tree whose
root is », and v has a witness. Since more than one rule could be
applicable to a constraint system S, the propagation rules should
be always applied according to the following strategy.

e Apply a rule to a variable only if no rule is applicable to
individual.

X. Zheng/ Knowledge-Based Systems 24 (2011) 595-608 603

o Apply a rule to a variable v only if no rule is applicable to a var-
iable u such that u < v.

e Apply a generating rule only if no nongenerating rule can be
applied.

It should be noted that once a generating rule has been applied
to a variable v in a constraint system S according to the strategy
above, a(-, v) is stable, i.e., 6(S', v) = (S, v), where S’ is any con-
straint system resulting from applying propagation rules to S. This
stability has been proved by Lemma 3.2 in [6]. A variable can be
blocked only after an application of a generating rule, and every
variable is blocked by a single witness. A constraint system is said
to be complete when no propagation rule applies to it. A complete
system derived from a constraint system S is called a completion of
S. Any constraint system containing a clash is evidently
unsatisfiable.

Given a clash-free completion S, we define its canonical inter-
pretation T = (A*,-T) and the canonical Z-assignment o as follows:

(1) A" := {s|s is an object in S}
(2) oZ(s) :=s.
(3) For a primitive concept D,s € D” iff s: D is in S.
(4) (s,t) e R¥iff
(Q) sRte S, or
(b) sis blocked, s is a leaf of the Dg-tree whose root is v, w is
the witness of », W is an isomorphism between the Dg-
trees rooted with v and w, and ¥(s) Rt € S.

If S is a completion of Sy and S contains no clash, it is always
possible to build a model for X on the basis of S. The following The-
orem 4.1 is proved by Theorem 3.6 in [6].

Theorem 4.1 (Correctness). Let S be a clash-free complete constraint
system, and let T be its canonical interpretation. Then, S is satisfiable
and T is a model of S.

Proof. It follows from the Theorem 3.6 in [6] and the Lemma 3.2 in
[2]. O

Example 4.1. Consider the ALCN'R knowledge base X, = (T1,.4;)
from Example 2.1.
The corresponding constraint system Sy is:

Ss = {b : 3Samelndustry.ForeignCompany LI 3 Samelndustry.DomesticCompany
Vx.x : ForeignCompany LI - ForeignCompany
Vx.x : —=ForeignCompany L —= DomesticCompany
Vx.x : 3Samelndustry . ForeignCompany U VSamelndustry.—ForeignCompany
Vx.x : 3Samelndustry.ForeignCompany LI —ForeignCompany
a#b}

Here, we consider 1-tree, namely, Dz = 1. An interpretation 7
can be constructed as follows which is Z; in Example 3.2, where in-
stances vy, v, U3, Uy, are added during the procedure of building the
canonical interpretation.

A" = {b,v1, v, 03, v4}

ForeignCompany” = {b, v1, V2, U3, Vsa}

DomesticCompany” = {5}

CompeteWithForeign® = {b, vy, v5, v3}
CompeteWithDomestic” = {5}

ProtectedCompany” = {5}

NonMonopoly” = {b}

Samelndustryz = {(b 1/1), (U], 1/2), (Uz, U3), (1)3, 1)4), (1/4, 1/3)}

4.3. Proof of termination and complexity

The algorithm begins with an initial constraint system trans-
lated from X. Then, the propagation rules are applied to generate
a set of completions. Each completion is a refinement of the initial
constraint system, in which every implicit constraint has been
made explicit. Therefore, in order to prove that the algorithm ter-
minates, it suffices to show that there is a bound on the number
of the constraints in completions.

Theorem 4.2 (Termination and Complexity). Let £ be an ALCNR
knowledge base. Every completion of Sy translated from X is finite.

Proof. The number of times that apply the propagation rules with
the given strategy to an object in a constraint system is bounded by
the size of the TBox 7. The number of new variables added by each
application of a propagation rule is also bounded by the largest
number appearing in the number restrictions in 7, i.e., (=n R)
and (<n R). We use the following notation:

e Let Dg be the maximum number of roles with the same name in
all empty R-clauses.

e Let N be the maximum number appearing in the number
restrictions in 7.

e Let K be the number of concepts appearing in Ss.

e Let L be the number of individuals appearing in A.

Let S’ be any constraint system resulting from applying the
propagation rules to Sy. Each constraints s: C € & may contain
only concepts of S. Since there are K such concepts, the number of
different sets of constraints s: Cin &' is at most 2X. An application of
a propagation rule to a variable x adds no more than N new
variables. Then, any Dg-tree rooted with x has at most N’* new
variables. Observe that the number of variables that can become
the roots of Dg-trees is bounded by 2X. Therefore, there are at most
2K % NPR + 2K total variables in &'. Since the number of individuals
is L, the total number of objects in & is at most 2K x NPR+2K+ [,
The number of different constraints of the forms s: Cand Vx. x: Cin
which each object s can be involved is also bounded by 2. Hence,
the total size of these constraints is bounded by

26 % 2K x NP 12X 4 1)

The number of constraints of the form s P t, s # t, is bounded by
(25 x (29 5 NPr 2K 1 1))?

To simplify notation, let M = Max(N,K,L). We obtain

2" (2" x MP® 42V 4 M))?

In conclusion, we have that the size of every completion of Sy is
O(M?Pr . 2*M) 'If D = 0, it would lead to a bound of 0(2*™). O

As pointed out in [10], a ndive approach to building a model for
description logic knowledge base may expand indefinitely by
applying a set of propagation rules to an initial constraint system,
and will therefore not terminate. For decidable DLs such as ALCANR
and SHZQ, termination can be ensured without losing complete-
ness because we can transform the infinite tree model of DL knowl-
edge base into a finite structure by setting the appropriate
termination conditions, i.e., by defining the blocked variable and
the strategy that the generating rules can be applied only on vari-
ables that are not blocked. As for function-free Horn rules, reason-
ing can be done by grounding the rules, i.e., replacing the variables
in the rules with the individuals from the knowledge base. Through

604 X. Zheng/ Knowledge-Based Systems 24 (2011) 595-608

grounding, first-order reasoning becomes propositional. For a finite
program, the number of grounds is also finite, and satisfiability of a
set of Horn rules is decidable. If we want to extend a DL such as
ALCNR with function-free Horn rules, we should ensure that the
canonical interpretations constructed from the clash-free comple-
tions of DL knowledge base are enough for use in the following
grounding of a set of Horn clauses. This is ensured by defining Dg
to be the maximum number of roles with the same name in all
empty R-clauses, which is also one of major differences between
the approach in [2] and the approach proposed here.

Theorem 4.3 (Decidability). Given an ALCNR knowledge base %,
checking whether X is satisfiable and building all the canonical
interpretations for X if it is satisfiable are decidable problems.

Proof. This follows from Theorems 4.1 and 4.2. O

Notice that it is necessary to apply the propagation rules based
on Dg-tree equivalence of variables, because terminological cycles
are allowed in ACLNR statements. Since the value of Dg depends
on the result of SLD-derivations ending with empty R-clauses, we
may change the order of step 1 and step 2 of our algorithm without
more complexity. Specifically, given an ARTIGENCE knowledge
base K, for the set of constrained clauses R, all the SLD-derivations
ending with the empty clauses are collected, and the correspond-
ing constraints are obtained at first. Then, let D; be the maximal
number of roles with the same names in these constraints. Sec-
ondly, we build all the canonical interpretations for the DL knowl-
edge base X by the tableaux-like calculus based on the technique
of constraint system, and represent them by Herbrand structures.
Finally for every canonical interpretation check if there is at least
one SLD-refutation, such that the corresponding constraints are
satisfied by that interpretation.

The proof of Theorem 4.2 shows that the number of constraints
of each completion is at most doubly exponential in the size of 7.
Consequently, the time complexity of checking whether the con-
straints of empty R-clauses are satisfied is also at most doubly
exponential in the size of 7, which problem we consider is at least
as hard as the KB-satisfiability problem studied in [6]. A low bound
of the complexity of KB-satisfiability problem is obtained by exam-
ining previous results about the language ALC. Since the language
ALC does not allow number restrictions and role conjunction, it is
considered to be a sublanguage of ALCA'R. We know from [6] that
KB-satisfiability in ACL knowledge bases is EXPTIME-hard. Hence
it is hard for ALCNR knowledge bases too. Notice that we have
provided only a worst-case complexity analysis. Therefore, the
above conclusion is a coarse upper bound for theoretical purposes.
We expect that the actual size to be much smaller than that in
practical cases, and the issue of optimization is outside the scope
of this paper.

5. Uncertainty reasoning in ARTIGENCE

In Sections 3 and 4, our inference procedures followed the model
of reasoning: from correct premises, sound inference rules produce
new correct conclusion. However, there are many situations that
will not fit this method, and sometimes we may draw useful conclu-
sions from uncertain evidence by using unsound inference rules.
Probabilistic analysis is appropriate when it is impossible to know
and measure all causes and their interactions well enough to predict
consequences. Towards reasoning techniques that allow for proba-
bilistic uncertainty in the Horn rule and ground fact components
of ARTIGENCE, we show that the uncertainty reasoning in ARTI-
GENCE is an instance of a certain type of linear programming model
based on probabilistic logic. In uncertain situation, for each model of

the DL it is not sufficient to check if there is just one constrained
SLD-refutation whose constraints are satisfied by that model, and
we should consider every constrained SLD-refutation, such that its
constraints are satisfied by the model instead, because each of them
may yield a different range of confidence levels for a query.

5.1. Probabilistic logic

Several logics for reasoning under uncertainty can be viewed as
probability mass distribution problems, and the solution of this dis-
tribution problem obtains a range of confidence level for the conclu-
sion. In probabilistic logic, probabilities are assigned to propositions
to indicate levels of confidence. The goal is to calculate the degree of
confidence one can have in a conclusion derived from these propo-
sitions. In other words, the inference problem is to determine how
much confidence we can place in the conclusion whose probability
mass is constrained by a set of interrelated propositions for which
masses are given. It has been shown that inference in probabilistic
logic can be formulated as a linear programming problem, typically
with exponentially many variables [11].

In probabilistic logic, we are given a set of propositions, Fj,
.. ,Fn, and the degrees of confidence we have in them. The confi-
dence degree for F; (i = 1,.. .,h) is indicated by its probabilistic mass,
which is an interval [I;, u;] € [0,1], and [; < u;. Let Pr be a function
that maps each possible world w € W into a real number in the
interval [0, 1] as follows.

Pr: W—10,1], and) Pr(w)=1, 0 < Pr(w) <1
weW

Let S; be the set of possible worlds that make proposition F; true,
and let u(S;) be the mass of S;, which denotes the sum of probabi-
listic masses that the function Pr can assign to the possible worlds
in which F; is true. The sets S;,...,S, need not all be distinct.

The propositions, Fy,....F, contain a set of atomic propositions
X1,-..Xn, and a possible world is an assignment
w:{Xq,.. .xn} — {0,1}" of truth values to the atomic propositions.
The proposition F; is true in a possible world w when the assign-
ment w makes it true, which is denoted by wkF;. Then, the mass
of S; under a function Pr is

(Si) =Y Pr(w),Si = {wiw = F;}
weSi

A function Pr is an interpretation of a set of probabilistic logic
propositions F; (i=1,...,h) if u(S;) € [l,u;] for every F.. The funda-
mental problem is to determine how much confidence we can have
in a new proposition F,; that is logical consequence of Fy,...Fy
whose probabilistic masses are given. Note that the probability of
all possible worlds must sum to one, and we can place bounds on
the mass of S, by solving the following two optimization problems.

minimize/maximize u(Sq;) subject to
U i= 1,..., h

5.2. Reasoning under uncertainty in ARTIGENCE

Probabilistic logic requires that the formulas must appear in the
form of propositions, i.e., there is no variable in the formulas of
probabilistic logic. As we all know that Horn clauses can be instan-
tiated from the resolution refutation process, and the sequence of
substitutions (unifications) used to make predicates equivalent
gives us the value of variables in the clauses. Hence, retaining
information on the unification substitutions made in the resolution
refutation give information for the instantiation, which replaces

X. Zheng/ Knowledge-Based Systems 24 (2011) 595-608 605

each clause by its instance. An instance of a clause can be regarded
as a proposition. Note that an instantiation might contain more
than one instance of the same clause. Now we are prepared to
present the global algorithm for reasoning under uncertainty in
ARTIGENCE, as shown in Algorithm 5.1.

Algorithm 5.1. Global algorithm for reasoning under uncertainty
in ARTIGENCE

Input: An ARTIGENCE knowledge base K = (X, P, F),
where X = (7, A) is an ALCNR knowledge base,
and Horn rules and ground facts are given with their
confidence levels;

A query Q to the knowledge base K.

Output: A ground instance of Q with confidence level.

Begin.

1. Collect all the SLD-derivations ending with the

empty clauses and the corresponding constraints for
a set of constrained clauses R and ground facts F.

2. Build all the canonical interpretations for the
description logic knowledge base X, and represent
them by Herbrand structures.

3. if for each canonical interpretation of X there is at
least one SLD-refutation whose constraints are
satisfied by that interpretation. then

4. for each canonical interpretation of ~ do

5. for each SLD-refutation whose constraints are
satisfied by the interpretation do

6. Construct and solve the corresponding

maximization and minimization linear
programming problems to obtain
an interval [[, u] for the query Q.

7. end for

8. end for

9. if maximum(l) < minimum(u) then

10. return [maximum(l),minimum(u)]

11. else the query Q is not logical consequence of .

End.

For each interpretation of X, we need to build a linear program-
ming model for every SLD-refutation whose constraints are satis-
fied by that interpretation, because each of them may have a
different set of possible worlds and a different function Pr that as-
signs each possible world in the set with a probabilistic mass. In
other words, for each SLD-refutation under a model of X, a query
Q may be logically related to different sets of clauses for which
masses are given. How much confidence we can have in the query
Q is constrained by the fact that S intersects those sets of possible
worlds that make the instances of clauses true and these clauses
logically entail the query Q, where S, is the set of possible worlds
that make the query Q true.

Example 5.1. Consider the ARTIGENCE knowledge base
K1 = (Z1,R1,F1) from Example 3.2, and here R; and F; are given
with confidence levels as follows.

Ry = {r; : serviceBy(x,y) A ProtectedCompany(y) — price(x, high)
ry : serviceBy(x,y) A Samelndustry(y,z) A ForeignCompany(z)
A highQuality(y, x) — price(x, high)
Pr(ry) € [0.75,0.90], Pr(r,) € [0.60,0.80]}

F1 = {f1 : serviceBy(a,b),f, : highQuality(b,a)
Pr(f;) = 0.95, Pr(f,) € [0.70,0.85]}

How much confidence we can have in the query price(a, high)?

Continue the Example 3.2 but in uncertain situation. For the
model M; = (Hy,1;), we can have the following propositions of
probabilistic logic.

Pr(serviceBy(a,b)) = 0.95
Pr(highQuality(b, a)) € [0.70,0.85]
Pr(serviceBy(a,b) A highQuality(b, a) — price(a, high)) € [0.60, 0.80]

Since every concept or role assertion in the model of X is
considered to be definitely true, we can remove them from the
propositions without affecting the result. Recall that as quanti-
fier restrictions the descript logic component has already filtered
out the values that its interpretation can assign to the variables
of Horn clauses. We will discuss how some probabilistic versions
of description logics can be accommodated to our framework
later.

Let (p1, P2, P3» P4» Ps» Ps, D7, Pg) denote the probabilities of the
eight possible worlds (serviceBy(a, b), highQuality(b, a), price(a,
high)) as shown in Table 1. We can place bounds on the mass of
the set of possible worlds that make the query price(a, high) true
by solving the two optimization problems.

minimize/maximize p, +p,+pg +Ds Subject to
D1
000O0O1T1T11 p, | = (095
001100T11 p; | <085
11111101 ps | < |080
001100T11 ps [=070
11111101 ps | = | 0.60
11111111 p, | = L 1.00
Ds
pi=0 i=1,...8

When finding the minimum value of the objective function, we
have {p;=0, p»=0, p3=0.05 ps=0, ps=0.3, ps=0, p;=04,
ps =0.25}, and p; + p4 + ps + pg = 0.25. When we want to maximize
the mass of the set of possible worlds in which the query price(a,
high) is true, we obtain {p; =0, p,=0.0125, p3=0, ps=0.0375,
ps=0, ps=02875 p;=0.2, pg=0.4625}, and p,+
P4+ ps * ps = 0.8. Hence, the confidence level we can have in the
query price(a, high) under the model M; is an interval [0.25, 0.8].

Similarly, for the model M, = (H,,1,) we have the following set
of propositions.

Pr (serviceBy(a,b)) = 0.95
Pr (serviceBy(a,b) — price(a, high)) € [0.75,0.90]
Let (p1, p2, P3, P4) be the probabilities of the four possible worlds

(serviceBy(a, b), price(a, high)) as shown in Table 2.
Now let us write the linear programming for the model M.

Table 1
Truth table for the model M; in Example 5.1.

Probability serviceBy(a,b) highQuality(b,a) price(a, high) ry
D1 0 0 0 1
D2 0 0 1 1
D3 0 1 0 1
Da 0 1 1 1
Ds 1 0 0 1
De 1 0 1 1
p7 1 1 0 0
Ds 1 1 1 1

606 X. Zheng/ Knowledge-Based Systems 24 (2011) 595-608

Table 2

Truth table for the model M, in Example 5.1.
Probability serviceBy(a,b) price(a, high) T
P 0 0 1
D2 0 1 1
ps 1 0 0
Da 1 1 1

minimize/maximize p, + p, subject to

001 1) (p)=(095
110 1|)p,|<])090
110 1()ps(=)075
111 1) {p)="_100

pi>0, i=1,.8.

When we want to minimize the objective function, we have
{p1=0.05, p, =0, p3=0.25, p4=0.7}, and p, + p4 = 0.7. Otherwise,
we obtain {p; =0, p,=0.05, p3=0.1, p;=0.85}, and p, +p,=0.9.
Thus, the confidence level of the query price(a, high) under the
model M, is an interval [0.7,0.9].

We say [I*, u*] is a confidence level of a query Q, if I* is maximum
value of the left bounds of all resulting intervals, u* is minimum va-
lue of the right bounds of all resulting intervals to all interpreta-
tions Pr of K, and [* is less than or equal to u*. In this example,
I* = Max(0.25,0.7) = 0.7, u*=Min(0.8,0.9)=0.8, and 0.7 < 0.8.
Therefore, the confidence level we can have in the query price(a,
high) is [0.7,0.8], denoted by K; [price(a, high)[0.7,0.8].

Now, the procedure of our algorithm has been described in de-
tail, we are prepared to prove the correctness, completeness and
decidability of our global algorithm.

Proposition 5.1 (Soundness and Completeness). Let Q be a query to
an ARTIGENCE knowledge base K. Then K | Q[I",u*] iff for every
canonical interpretation of X these is at least one SLD-refutation
whose constraints are satisfied by that interpretation; and for every
SLD-refutation under each interpretation of X there exists an inter-
pretation Pr, such that the confidence level of Q is an interval [l, u]
under the Pr; and I* (respectively, u*) is maximum (respectively,

s

minimum) value of | (respectively, u) of all such intervals, and I < u*.

Proof. The claim follows from Theorem 3.5 without considering
uncertainty. Here, we focus our attention on the part of uncertainty
reasoning.

Soundness («<): By the precondition, any number that lies
between I* and u* is also included in any range of the confidence
levels we can have in the query Q to all interpretations Pr
computed for every SLD-refutation under each interpretation of
3. In other words, that we can trust in Q with the confidence level
[I*, u¥] is supported by every interpretation Pr of K.

Completeness (=): Suppose the probability mass of Q is included
in an interval [0, I*). By the definition of I*, I* is maximum value of
the left bounds of all interpretations Pr of K. Then, there must be an
interpretation Pr, such that the confidence level of Q under that
interpretation does not intersect the interval [0, [*). This is a
contradiction. We have the same conclusion for an interval (u*,
1. O

Theorem 5.2 (Decidability). Query answering under uncertainty in
ARTIGENCE is decidable.

Proof. It follows from Theorems 3.6 and 4.3 and the fact that linear
programming problems are solvable in exponential time. O

For some applications one may wish to express uncertainty in
the component of description logic, although we do not pursue this
possibility in detail here. But we point out that some probabilistic
versions of description logics such as [12,13] can be easily accom-
modated to our framework without affecting the complexity of
reasoning. For example, in [12] a concept assertion C(a) of ABox
is generalized by a probabilistic assertion Pr(C(a)) € [l,u] to express
uncertain knowledge. In these cases, probabilistic concept and role
assertions in the canonical interpretation can be imposed by add-
ing the corresponding condition equations to linear programming
models as ground facts with confidence levels, and other steps of
our global algorithm remain unchanged.

In probabilistic logic, we assume that the confidence levels of
formulas F; are provided from a single evidence source. However,
it is possible to allow for multiple evidence sources to supply prob-
abilities (or estimates of these) to the formulas in question [11]. It
is useful to extend the ordinary model of probabilistic logic, espe-
cially for inherent open and dynamic Web.

Suppose we have k evidence sources, denoted by E; (j = 1,.. .,k). If
k = 2, we get conditional probabilities Pr(Fj|E;), i = 1,...,h. The inter-
pretation of these probabilities is: the probability of F; given that
evidence source j is reliable. For each of F;, there are k probabilities,
each of which is obtained from one of the k evidence sources. Let S;
be the set of possible worlds that make proposition F; true, and R;
the set of possible worlds in which evidence source j is reliable.
If evidence source j delivers information that the probability of F;
is in the interval [I/ ,uﬂ, this is equivalent to the set of condition
equations:

The above condition equations can be rewritten to

0<Pr(SinR)—l xPr(R), i=1,...,h, j=1,... k
Pr(S;nR) —u/ xPr(R) <0, i=1,...,h, j=1,....k

It is also possible to specify probability intervals [F,i¥] for each
evidence source. This gives rise to the set of condition equations:

P<PrE)<w,j=1,... .k

Then, the extended linear programming model is:
minimize/maximize p(S;) subject to
0<Pr(SinR)—l xPr(R), i=1,...,h, j=1,.. k
Pr(SinR) —u/ xPr(R) <0, i=1,...,h, j=1,...,k
V<PrE) <u, j=1,....k
> Priw)=1, 0<Prw)<1

weW

6. Related to previous work

Related work on the combination of Horn rules and description
logics with uncertainty can be divided into (a) hybrid systems
using description logics as input to logic programs; (b) approaches
reducing description logics reasoning to logic programming; (c)
probabilistic extension of description logics. Below we review
some representatives for these three types of related work.

Some hybrid systems using description logics as input to logic
programs are works by [2,10,14,15]. Donini et al. present an inte-
grated system, called .AL-log, based on description logic ALC and
a set of constrained Datalog clauses, each of them is variants of
Horn rules [14]. The interaction between the two components is
realized by allowing the specification of constraints in Datalog
clauses, where constraints are expressed using .AL£C. Constraints
on variables require them to range over the set of instances of a

X. Zheng/ Knowledge-Based Systems 24 (2011) 595-608 607

specified concept, where constraints on individual objects require
them to belong to a concept. AL-log allows recursive clauses, but
a weaker description logic .A£C, and only unary predicates from
the description logic are allowed in the constrained Datalog
clauses. We treat a more expressive logic and other decidable
description logics can be easily accommodated to our framework.

Levy and Rousset present CARIN that extends Horn rules with
the expressive power of the description logic ALCAR, which is
most closely related to ARTIGENCE [2]. CARIN combines the two
formalisms by allowing the concepts and roles, defined in the
description logic, to appear as predicates in the antecedents of
Horn rules. In contrast to .A£-log, CARIN does not require the safety
condition that a variable appearing in a concept atom had to ap-
pear in an atom of ordinary predicate in the body of a rule. It has
been shown that such hybrid system is not straightforward, and
that some restrictions must be imposed in order to retain decid-
ability of the reasoning services. We provide a proof of decidability
and give a decision procedure combining tableau calculus with
constrained resolution.

Motic et al. present an approach for extending OWL-DL with
function-free Horn rules which yields a logic with decidable rea-
soning algorithms in [10]. However, the rules are required to be
DL-safe: each variable in the rule is required to occur in a non-
DL-atom in the rule body. As a consequence, rules apply only to
individuals explicitly introduced in the ABox. In applications
requiring intensional reasoning such as natural language process-
ing, DL-safety is a severe restriction, as many conclusions drawn
involve unnamed objects. The concept and role atoms must not ap-
pear in the consequents of the Horn rules in our approach, but the
rules are not required to be DL-safe, and we can deal with uncer-
tainty. Hence when compared to [10], our approach is slightly gen-
eral in some, and slightly more general in other aspects.

Lukasiewicz describes probabilistic logic programs that com-
bine with description logic under the answer set semantics and
the well-founded semantics with Poole’s independent choice logic
[16]. It has been shown that the query processing in such probabi-
listic logic programs can be reduce to computing all answer sets of
logic programs, solving linear optimization problems, and to com-
puting the well-founded model of logic programs, respectively
[15]. Lukasiewicz also allows concept and role constraints from
description logic in the rules of logic programs, but a different kind
of description logic SHZF (D). SHZF (D) is somewhat less expres-
sive than indicated by its name since the use of roles in number
restrictions is restricted: roles that have a transitive subrole must
not occur in number restrictions.

Description logic programs language (DLP) proposed in [1]
based on the expressive intersection of description logics with
Horn rules as early representative of reducing description logic
reasoning to logic programming. Actually, description logics and
Horn rules are strict (decidable) subsets of first-order logic. Anto-
niou and Wagner present defeasible extension to the description
logic programs by introducing a superiority relation among the
rules [17]. Nottelmann and Fuhr propose pDAML + OIL that is a
probabilistic generalization of the description logic programs by
mapping a part of SHOZQ(D) onto probabilistic Horn logics [18].
The results are obviously decidable languages, but those are neces-
sarily less expressive than either the description logics or Horn
rules from which are formed. It seems that such languages are
insufficient for the modeling of finer details of real applications.

The works in [12,13,19] are representatives of probabilistic
extension of description logics. Jaeger provides a probabilistic
extension of the description logic .ALC by introducing statements
about conditional probabilities between concepts and statements
to express uncertain knowledge about a specific object [12]. The fo-
cus was on completing partial statistical information from a small
set of probabilistic statements by cross-entropy minimization.

Koller et al. present P-CLASSIC, a probabilistic version of the
description logic CLASSIC, in order to express the degree of overlap
between concepts, which is based on Bayesian networks [19]. The
main reasoning problem is to determine the exact probabilities for
conditionals between concept expressions. However, probabilistic
knowledge about ground facts (i.e., Abox) is not allowed in the
knowledge base of P-CLASSIC. Giugno and Lukasiewicz propose
P-SHOQ(D), another probabilistic extension of description logic
SHOQ(D) [13]. P-SHOQ(D) allows to express probabilistic knowl-
edge about concepts and instances by utilizing the notion of prob-
abilistic lexicographic entailment from probabilistic default
reasoning [20,21]. A fuzzy extension of ALC, combining Zadeh'’s
fuzzy logic with a classical description logic, is described in [22],
which is less closely related, as fuzzy uncertainty deals with vague-
ness, rather than likelihood. Pan et al. proposed f-SWRL, a fuzzy
extension to SWRL (Semantic Web Rule Language) to include fuzzy
assertions and rules in [23]. Lukasiewicz and Straccia give an over-
view of approach to managing uncertainty and vagueness in
description logics [24].

Several other works also have discussed the integration of Horn
rules and description logics. Their reasoning procedure was modi-
fied either by taking extra steps to consider the resolutions sanc-
tioned by the description logic component or by modifying the
unification substitutions underlying the reasoning engine. These
approaches are either incomplete or some restriction must be im-
posed in order to retain decidability. ARTIGENCE differs from pre-
vious works in several ways: it has a sound, complete, and
decidable inference procedure; it not only combines the expressive
power of Horn rules and description logics, but also can deal with
uncertainty; ACLNR is considered as the description logic compo-
nent of ARTIGENCE, which is one of the most expressive descrip-
tion logics with decidable inference procedures. Other decidable
description logics, even their probabilistic versions can be easily
accommodated to our framework. Some applications of such hy-
brid systems can be found in [25,26].

7. Conclusions

We have described ARTIGENCE, a representation language that
combines description logics and Horn rules with uncertainty. We
show that query answering in ARTIGENCE can be reduced to for
every model of DL knowledge base checking if there is at least
one constrained SLD-refutation whose constraints are satisfiable
in that model, and for every SLD-refutation under each model of
DL knowledge base solving two linear programming problems to
obtain an interval of confidence level of the query, and taking the
intersection of all such intervals as the resulting confidence level
we can have in the query. As a result, we obtained a sound, com-
plete, and decidable algorithm for reasoning in ARTIGENCE knowl-
edge base. We also discussed several possible extensions both to
the underlying description logic and to the probabilistic Horn rule
component.

It is worth noting that our framework allows a family of
description logics not necessarily ALCANR but any other descrip-
tion logics, even their probabilistic versions if they have decidable
algorithm to build all the canonical interpretations for their knowl-
edge bases. The main goal of our work is to combine the expressive
power of probabilistic Horn rules and description logics. In fact,
there is still lack of some useful features, such as integration with
relational model, and the ability to perform nonmonotonic reason-
ing in the component of description logic. Description logics natu-
rally capture the way in which people encode their knowledge by
defining basic concepts, their properties, and the relations between
them. Unfortunately, it is severely limited in its ability to represent
defeasible inference. Nonmonotonic systems are important in

608 X. Zheng/ Knowledge-Based Systems 24 (2011) 595-608

practice since they can model phenomena like exceptions and pri-
orities naturally in declarative way. So it makes sense to study how
description logics are equipped with nonmonotonic reasoning to
deal with inconsistencies, and how these nonmonotonic exten-
sions of description logics fit into our framework.

ARTIGENCE can be used in at least two contexts. Description
logics are orthogonal to Horn rules: none of proper subset of the
other. Applications that utilize our framework can significantly
benefit from combing the expressive power of both formalisms,
and improve on deductive power and representational adequacy.
More importantly, reasoning in ARTIGENCE is decidable as well
as sound and complete, and it can deal with uncertainty, which en-
able us to obtain query answers that were not possible before this
framework. Another possible use of ARTIGENCE for Semantic Web
is mentioned in the introduction. Although OWL adds more vocab-
ulary for describing properties and classes, and enhances consider-
able expressive power to the Semantic Web, it still has expressive
limitations, particularly with respect to what can be said about
properties. A feasible way to overcome some of expressive restric-
tions of OWL would be to extend it with Horn rules. ARTIGENCE is
such representation language that can combines information from
multiple evidence sources with its ability in uncertainty reasoning,
which follows the philosophy of the Semantic Web that anybody
can produce information or utilize anyone else’s information on
open environment full of dynamic and uncertainty.

Although the focus of this paper is on the question of decidabil-
ity and soundness of the reasoning problem in ARTIGENCE, our
work raises the critical performance issue of how to efficiently rea-
son in the system. The inference procedure of ARTIGENCE requires
that for every model of DL knowledge base, we need to deduce all
(at least one) constrained empty clauses whose constraints are sat-
isfiable in that model. One of the possible optimizations is to re-
place the traditional “blind” search in automated deduction by
more directed search or still better by deterministic resolution un-
der the guidance of the semantic information from the constraint
model. A second direction is to reduce the size and number of
the completions in order to obtain sufficient but least models for
DL knowledge base. In our context, we attempt to stop applying
the propagation rules to the tableau branch that is proved to be
equivalent to a completion already created before, or unite two
or more equivalent tableau branches into one for a specific query
as early as possible. An implementation with practically efficient
method for reasoning is planned, and we are currently looking into
applying ARTIGENCE as a representational and reasoning frame-
work for multi-agent applications and information integration.

Acknowledgements

I am grateful to Hans-Jirgen Biirckert for discussion on the
decidability of constrained resolution. The work was supported
by a grant from the National Natural Science Foundation of China
(No. 60903078) and a grant from Fudan Research Fund for Young
Scholars.

References

[1] B.N. Grosof, I. Horrocks, R. Volz, S. Decker, Description logic programs:
combining logic programs with description logic, in: Proc. 13th Int. World
Wide Web, 2003, pp. 48-57.

[2] AY. Levy, M.-C. Rousset, Combining Horn rules and description logics in CARIN,
Artificial Intelligence 104 (1998) 165-209.

[3] L. Horrocks, P.F. Patel-Schneider, F.V. Harmelen, From S%ZQ and RDF to OWL:
the making of a Web ontology language, Journal of Web Semantics 1 (1) (2003)
7-26.

[4] 1. Horrocks, P.F. Patel-Schneider, A proposal for an OWL rules language, in:
Proc. 14th Int. World Wide Web, 2004, pp. 723-731.

[5] H-J. Biirckert, A resolution principle for constrained logics, Artificial
Intelligence 66 (1994) 235-271.

[6] M. Buchheit, F.M. Donini, A. Schaerf, Decidable reasoning in terminological
knowledge representation systems, Journal of Artificial Intelligence Research 1
(1993) 109-138.

[7] S. Ceri, G. Gottlob, L. Tanca, Logic Programming and Databases, Springer-
Verlag, Berlin, 1990.

[8] E.M. Donini, M. Lenzerini, D. Nardi, W. Nutt, The complexity of concept
languages, in: Proc. 2nd Int. Principles of Knowledge Representation and
Reasoning, 1991, pp. 151-162.

[9] M. Schmidt-Schauf, G. Smolka, Attributive concept descriptions with
complements, Artificial Intelligence 48 (1) (1991) 1-26.

[10] B. Motik, U. Sattler, R. Studer, Query answering for OWL-DL with rules, in:
Proc. 5th Int. International Semantic Web Conference, 2004, pp. 549-563.

[11] K.A. Andersen, J.N. Hooker, A linear programming framework for logics of
uncertainty, Decision Support Systems 16 (1996) 39-53.

[12] M. Jaeger, Probabilistic reasoning in terminological logics, in: Proc. 4th Int.
Principles of Knowledge Representation and Reasoning, 1994, pp. 305-316.

[13] R. Giugno, T. Lukasiewicz, P-SHOQ(D): a probabilistic extension of SHOQ(D)
for probabilistic ontologies in the Semantic Web, in: Proc. 9th European
Conference on Logics in Artificial Intelligence, 2002, pp. 86-97.

[14] F.M. Donini, M. Lenzerini, D. Nardi, A. Schaerf, A£-log: integrating datalog and
description logics, Journal of Intelligent Information Systems 10 (1998) 227-
252.

[15] T. Lukasiewicz, Probabilistic description logic programs, International Journal
of Approximate Reasoning 45 (2) (2006) 288-307.

[16] D. Poole, The independent choice logic for modeling multiple agents under
uncertainty, Artificial Intelligence 94 (1-2) (1997) 7-56.

[17] G. Antoniou, G. Wagner, Rules and defeasible reasoning on the Semantic Web,
in: Proc. 2nd Int. Rules and Rule Markup Languages for the Semantic Web,
2003.

[18] H. Nottelmann, N. Fuhr, pDAML+OIL: a probabilistic extension to DAML + OIL
based on probabilistic Datalog, in: Proc. 10th Int. Information Processing and
Management of Uncertainty in Knowledge-based Systems, 2004.

[19] D. Koller, A. Levy, A. Pfeffer, P-CLASSIC: a tractable probabilistic description
logic, in: Proc. 4th National Conference on Artificial Intelligence, 1997, pp.
390-397.

[20] T. Lukasiewicz, Probabilistic logic programming under inheritance with
overriding, in: Proc. 17th Uncertainty in Artificial Intelligence, 2001, pp.
329-336.

[21] T. Lukasiewicz, Probabilistic default reasoning with conditional constraints,
Annals of Mathematics and Artificial Intelligence 34 (1-3) (2002) 35-88.

[22] U. Straccia, Reasoning within fuzzy description logics, Journal of Artificial
Intelligence Research 14 (2001) 137-166.

[23] J.Z. Pan, G. Stoilos, G.B. Stamou, V. Tzouvaras, I. Horrocks, f-SWRL: a fuzzy
extension of SWRL, Journal of Data Semantics 6 (2006) 28-46.

[24] T. Lukasiewicz, U. Straccia, Managing uncertainty and vagueness in description
logics for the Semantic Web, Journal of Web Semantics 6 (4) (2008)
291-308.

[25] Q.L. Guo, M. Zhang, Question answering based on pervasive agent ontology
and Semantic Web, Knowledge-Based Systems 22 (6) (2009) 443-448.

[26] P.F. Liu, B. Raahemi, M. Benyoucef, Knowledge sharing in dynamic virtual
enterprises: a socio-technological perspective, Knowledge-Based Systems 24
(3) (2011) 427-443.

	Combining description logics and Horn rules with uncertainty in ARTIGENCE
	Introduction
	Language ARTIGENCE
	Description logic component
	Horn rule component
	Ground fact component
	Semantics of ARTIGENCE knowledge base
	Reasoning in ARTIGENCE

	Constrained resolution in ARTIGENCE
	Resolution principle for constrained logics
	Proof of soundness, completeness and decidability

	Decidable algorithm for ?
	Constraint system
	Algorithm description
	Proof of termination and complexity

	Uncertainty reasoning in ARTIGENCE
	Probabilistic logic
	Reasoning under uncertainty in ARTIGENCE

	Related to previous work
	Conclusions
	Acknowledgements
	References

